Effects of Overnight Oxidation on Perovskite Solar Cells with Co(III)TFSI Co-Doped Spiro-OMeTAD

Author:

Nakka Laxmi,Aberle Armin Gerhard,Lin Fen

Abstract

Metal-halide perovskite solar cells (PSCs) have achieved remarkable power conversion efficiencies in recent years, and spiro-OMeTAD plays a significant role as a hole transport material in PSCs with record efficiencies. However, further studies and systematic experimental procedures on doped spiro-OMeTAD are required to enable a reliable process for potential commercialization. In particular, the effect of the prolonged oxidation of Co(III)TFSI co-doped spiro-OMeTAD has been one of the unanswered topics in PSC research. In this work, we investigate the influence of overnight oxidation on the performance of PSCs with Co(III)TFSI co-doped spiro-OMeTAD. Co-doping spiro-OMeTAD with Co(III) complexes instantly oxidizes spiro-OMeTAD, leading to an improvement in power conversion efficiency (PCE) from 13.1% (LiTFSI-doped spiro-OMeTAD) to 17.6% (LiTFSI + Co(III)TFSI-doped spiro-OMeTAD). It is found that PSCs with spiro-OMeTAD co-doped with Co(III)TFSI without overnight oxidation could retain around 90% of the efficiency under maximum power point tracking at 1-sun illumination for 3000 min, whereas the efficiencies drop by more than 30% when Co(III)TFSI co-doped spiro-OMeTAD is exposed to overnight oxidation. Hence, it is important to inhibit the unnecessary overnight oxidation of Co(III)TFSI co-doped spiro-OMeTAD so as to save excess fabrication time and overcome the poor stability issues.

Funder

National Research Foundation

National University of Singapore

Energy Market Authority of Singapore

Singapore Economic Development Board

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3