Aerodynamic Performance and Wake Characteristics Analysis of Archimedes Spiral Wind Turbine Rotors with Different Blade Angle

Author:

Song KeORCID,Huan Huiting,Kang Yuchi

Abstract

Continuous improvement of wind turbines represent an effective way of achieving green energy and reducing dependence on fossil fuel. Conventional lift-type horizontal axis wind turbines, which are widely used, are designed to run under high wind speed to obtain a high efficiency. Aiming to use the low-speed wind in urban areas, a novel turbine, which is called the Archimedes Spiral Wind Turbine (abbreviated as ASWT), was recently proposed for low-speed wind applications. In the current work, a numerical simulation on the five ASWT rotors with different blade angles was carried out, which were performed to predict the detailed aerodynamic performance and wake characteristics. The results show that the ASWT rotor with a large blade angle has a wider operating tip speed ratio range and a higher tip speed ratio point of maximum power coefficient within a certain range, and yet the ASWT rotor with the larger blade angle has a higher thrust coefficient. Additionally, the ASWT rotor with a large blade angle usually has a large power coefficient and thrust coefficient fluctuation amplitude. On the other hand, the ASWT rotor with a small blade angle permits the undisturbed free stream to pass through the rotor blades more easily than that with a large blade angle. This causes a stronger blockage effect for the ASWT rotor with a large blade angle. Moreover, the blade angle also has a great effect on the shape of the vortex structure. The blade tip vortex of the fixed-angle ASWT rotors is more stable than those of the variable-angle ASWT rotors. The hub vortex of the ASWT rotors with a large blade angle is stronger than those with a small blade angle. Meanwhile, the wake recovery for ASWT rotors with a small blade angle is evidently lower than those with a large blade angle.

Funder

Key Laboratory of Yunnan Advanced Equipment Intelligent Manufacturing Technology

Yunnan Fundamental Research Project

Kunming University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3