A Composite Exponential Reaching Law Based SMC with Rotating Sliding Surface Selection Mechanism for Two Level Three Phase VSI in Vehicle to Load Applications

Author:

Haroon Faheem,Aamir Muhammad,Waqar AssadORCID,Mian Qaisar SaeedORCID,Ali Syed UmaidORCID,Almaktoom Abdulaziz TurkiORCID

Abstract

Voltage source inverters (VSIs) are an integral part of electrical vehicles (EVs) to enhance the reliability of the supply power to critical loads in vehicle to load (V2L) applications. The inherent properties of sliding mode control (SMC) makes it one of the best available options to achieve the desired voltage quality under variable load conditions. The intrinsic characteristic of robustness associated with SMC is generally achieved at the cost of unwanted chattering along the sliding surface. To manage this compromise better, optimal selection of sliding surface coefficient is applied with the proposed composite exponential reaching law (C-ERL). The novelty of the proposed C-ERL is associated with the intelligent mix of the exponential, power, and difference functions blended with the rotating sliding surface selection (RSS) technique for three phase two level VSI. Moreover, the proposed reaching law along with the power rate exponential reaching law (PRERL), enhanced exponential reaching law (EERL), and repetitive reaching law (RRL) were implemented on two level three phase VSI under variable load conditions. A comparative analysis strongly advocates the authenticity and effectiveness of the proposed reaching law in achieving a well-regulated output voltage with a high level of robustness, reduced chattering, and low %THD.

Funder

Effat University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference41 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3