Selective Absorbing Surface Based on CrO3: Evaluation of Substrates Treatment Influence on the Films Optical Properties

Author:

Pereira Gustavo Furtado,Oliveira Aline da Silva,Gomes Kelly CristianeORCID,Silva Neto José Félix,Simões Thiago Araújo,Leal Antônio Farias,Torres Sandro MardenORCID,Lima Filho Marçal Rosas Florentino

Abstract

Solar energy presents the greatest potential by which to produce heat energy with reduced carbon emissions for power generation. To increase its harvesting and conversion, it is necessary to understand fundamental concepts and develop new materials. Although many processes can obtain selective absorbing surfaces (SAS) for application in solar energy exploitation, including electroplating methods, those processes have not sufficiently investigated the substrate’s treatment impact. The present work investigates 304 stainless steel (SS304) substrates treatment influence on the film’s (coatings) optical properties of SAS based on CrO3 electroplating. For this purpose, three main steps featured in the methodology: substrates treatment, coatings deposition, and physical-chemical characterization. The former was performed by detergent cleaning (DC), acid treatment (AT), and electropolishing (EP). Then, coatings were electroplated towards chromium deposition on the substrates with different deposition times. Finally, films were characterized by Profilometry, UV-Vis-NIR, and IR regions Spectroscopy and Scanning Electron Microscopy (SEM). The results indicated that, in terms of surface treatments on the substrate, the electropolished (EP) substrates presented average roughness values of 35 nm, reflectivity of 5.09%, and clear morphological difference (SEM) when compared to other treatments in this study (DC and AT). A SAS was successfully obtained, and the electropolished substrates (EP) presented coatings with better optical performance than other samples (DC and AT), with absorptivity values around 98% and emissivity of approximately 7%. A relationship between substrate treatment, its roughness, and the impacts on the optical selectivity of SASs was observed. Therefore, electropolishing is presented as a promising treatment for the SASs substrates.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference45 articles.

1. Solar Energy: Potential and Future Prospects;Kabir;Renew. Sustain. Energy Rev.,2018

2. Powering the Planet: Chemical Challenges in Solar Energy Utilization;Lewis;Proc. Natl. Acad. Sci. USA,2006

3. Thin Film Technology for Solar Steam Generation: A New Dawn;Elsheikh;Sol. Energy,2019

4. Beyond 3rd Generation Solar Cells and the Full Spectrum Project. Recent Advances and New Emerging Solar Cells;Akinoglu;Sustain. Energy Technol. Assess.,2021

5. Chromium Silica Co-Sputtered Graded Cermet for Solar Thermal Collectors;Torres;Sol. Energy,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3