Capabilities of an Acoustic Camera to Inform Fish Collision Risk with Current Energy Converter Turbines

Author:

Staines Garrett J.,Mueller Robert P.ORCID,Seitz Andrew C.,Evans Mark D.,O’Byrne Patrick W.ORCID,Wosnik Martin

Abstract

A diversified energy portfolio may include marine energy in the form of current energy converters (CECs) such as tidal or in-river turbines. New technology development in the research stage typically requires monitoring for environmental effects. A significant environmental effect of concern for CECs is the risk of moving parts (e.g., turbine blades) colliding with animals such as fishes. CECs are installed in energetic locations in which it is difficult to operate sensors to fulfill monitoring requirements for informing collision risk. Collecting data (i.e., about blade strikes or near-misses) that inform interactions of fishes with CECs is usually attempted using active acoustic sensors or video cameras (VCs). Limitations of low-light conditions or water turbidity that preclude effective use of VCs are overcome by using high-resolution multibeam echosounders (or acoustic cameras (ACs)). We used an AC at two sites to test its ability to detect artificial and real fish targets and determine if strike, near-miss, and near-field behavior could be observed. Interactions with fish and artificial targets with turbines have been documented but strike confirmation with an AC is novel. The first site was in a tidal estuary with a 25 kW turbine and water clarity sufficient to allow VC data to be collected concurrently with AC data showing turbine blade strike on tethered artificial fish targets. The second site was a turbid, debris-laden river with a 5 kW turbine where only AC data were collected due to high water turbidity. Data collection at the second site coincided with downstream Pacific salmon (Oncorhynchus spp.) smolt migration. Physical fish capture downstream of the turbine was performed with an incline plane trap (IPT) to provide context for the AC observations, by comparing fish catches. Discrimination between debris and fishes in the AC data was not possible, because active movement of fishes was not discernable. Nineteen fishes were released upstream of the turbine to provide known times of possible fish/turbine interactions, but detection was difficult to confirm in the AC data. ACs have been used extensively in past studies to count large migratory fish such as Pacific salmon, but their application for small fish targets has been limited. The results from these two field campaigns demonstrate the ability of ACs to detect targets in turbid water and observe blade strikes, as well as their limitations such as the difficulty of distinguishing small fishes from debris in a high-energy turbid river. Recommendations are presented for future applications associated with CEC device testing.

Funder

United States Department of Energy

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3