Reactive Collision Avoidance of an Unmanned Surface Vehicle through Gaussian Mixture Model-Based Online Mapping

Author:

Lee DongwooORCID,Woo Joohyun

Abstract

With active research being conducted on maritime autonomous surface ships, it is becoming increasingly necessary to ensure the safety of unmanned surface vehicles (USVs). In this context, a key task is to correct their paths to avoid obstacles. This paper proposes a reactive collision avoidance algorithm to ensure the safety of USVs against obstacles. A global map is represented using a Gaussian mixture model, formulated using the expectation–maximization algorithm. Motion primitives are used to predict collision events and modify the USV’s trajectory. In addition, a controller for the target vessel is designed. Mapping is performed to demonstrate that the USV can implement the necessary avoidance maneuvers to prevent collisions with obstacles. The proposed method is validated by conducting collision avoidance simulations and autonomous navigation field tests with a small-scale autonomous surface vehicle (ASV) platform. Results indicate that the ASV can successfully avoid obstacles while following its trajectory.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3