Effects of the NaCl Concentration and Montmorillonite Content on Formation Kinetics of Methane Hydrate

Author:

Zeng Haopeng,Zhang Yu,Zhang Lei,Chen ZhaoyangORCID,Li Xiaosen

Abstract

Most resources of natural gas hydrate (NGH) exist in marine sediments where salts and sea mud are involved. It is of great importance to investigate the effects of salts and sea mud on NGH formation kinetics. In this study, the mixture of silica sand and montmorillonite was used to mimic sea mud. The effects of the NaCl concentration of pore water and montmorillonite content on methane hydrate formation were studied. A low NaCl concentration of 0.2 mol/L and a low montmorillonite content range of 10–25 wt% is beneficial to reduce the induction time of hydrate formation. The high NaCl concentration and high content of montmorillonite will significantly increase the induction time. The average induction time for the experiments with the NaCl concentrations of 0, 0.2, 0.6, and 1.2 mol/L is 20.99, 8.11, 15.74, and 30.88 h, respectively. In the pure silica sand, the NaCl concentration of 0.2 mol/L can improve the final water conversion. In the experiments with pure water, the water conversion increases with the increase of the montmorillonite content due to the improvement of the dispersion of montmorillonite to water. The water conversion of the experiments in pure water with the montmorillonite contents of 0, 10, 25 and 40 wt% is 12.14% (±1.06%), 24.68% (±1.49%), 29.59% (±2.30%), and 32.57% (±1.64%), respectively. In the case of both montmorillonite and NaCl existing, there is a complicated change in the water conversion. In general, the increase of the NaCl concentration enhances the inhibition of hydrate formation and reduces the final water conversion, which is the key factor affecting the final water conversion. The average water conversion of the experiments under the NaCl concentrations of 0, 0.2, 0.6 and 1.2 mol/L is 24.74, 15.14, 8.85, and 5.74%, respectively.

Funder

National Natural Science Foundation of China

Guangdong Special Support Program

Special project for marine economy development of Guangdong Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3