Addressing the Directionality Challenge through RSSI-Based Multilateration Technique, to Localize Nodes in Underwater WSNs by Using Magneto-Inductive Communication

Author:

Qiao Gang,Muhammad AmanORCID,Muzzammil MuhammadORCID,Shoaib Khan MuhammadORCID,Tariq Muhammad OwaisORCID,Khan Muhammad ShahbazORCID

Abstract

The deployment and efficient use of wireless sensor networks (WSNs) in underwater and underground environments persists to be a difficult task. In addition, the localization of a sensor Rx node in WSNs is an important aspect for the successful communication with the aforementioned environments. To overcome the limitations of electromagnetic, acoustic, and optical communication in underwater and underground wireless sensor networks (UWSNs), magneto-inductive (MI) communication technology emerged as a promising alternative for usage in UWSNs with a wide range of applications. To make the magneto-inductive underwater wireless sensor networks (MI-UWSNs) more efficient, recently, various research studies focused on the optimization of the physical layer, MAC layer, and routing layer, but none of them has taken into account the effect of directionality. Despite the directionality issue posed by the physical nature of a magnetic field, the unique qualities of MI communication open up a gateway for several applications. The directionality issue of MI sensors is a critical challenge that must be taken into account while developing any WSN protocol or localization algorithm. This paper highlights and discusses the severity and impact of the directionality issue in designing a localization algorithm for magneto-inductive wireless sensor networks (MI-WSNs). A received signal strength indicator (RSSI)-based multilateration localization algorithm is presented in this paper, where a minimum of 2 and maximum of 10 anchor Tx nodes are used to estimate the position of the sensor Rx nodes, which are deployed randomly in a 15 m × 15 m simulation environment. This RSSI-based multilateration technique is the most suitable option that can be used to quantify the impact of directionality on the localization of a sensor Rx node.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3