The Selectivity of Immunoassays and of Biomimetic Binding Assays with Imprinted Polymers

Author:

Becskereki GergelyORCID,Horvai George,Tóth Blanka

Abstract

Molecularly imprinted polymers have been shown to be useful in competitive biomimetic binding assays. Recent developments in materials science have further enhanced the capabilities of imprinted polymers. Binding assays, biological and biomimetic alike, owe their usefulness to their selectivity. The selectivity of competitive binding assays has been characterized with the cross-reactivity, which is usually expressed as the ratio of the measured IC50 concentration values of the interferent and the analyte, respectively. Yet this cross-reactivity is only a rough estimate of analytical selectivity. The relationship between cross-reactivity and analytical selectivity has apparently not been thoroughly investigated. The present work shows that this relationship depends on the underlying model of the competitive binding assay. For the simple but widely adopted model, where analyte and interferent compete for a single kind of binding site, we provide a simple formula for analytical selectivity. For reasons of an apparent mathematical problem, this formula had not been found before. We also show the relationship between analytical selectivity and cross-reactivity. Selectivity is also shown to depend on the directly measured quantity, e.g., the bound fraction of the tracer. For those cases where the one-site competitive model is not valid, a practical procedure is adopted to estimate the analytical selectivity. This procedure is then used to analyze the example of the competitive two-site binding model, which has been the main model for describing molecularly imprinted polymer behavior. The results of this work provide a solid foundation for assay development.

Funder

National Research, Development and Innovation Office

Ministry for Innovation and Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MIP-based immunoassays: A critical review;Analytica Chimica Acta;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3