Characterization of the Human Eccrine Sweat Proteome—A Focus on the Biological Variability of Individual Sweat Protein Profiles

Author:

Burat BastienORCID,Reynaerts Audrey,Baiwir DominiqueORCID,Fléron Maximilien,Eppe GauthierORCID,Leal Teresinha,Mazzucchelli Gabriel

Abstract

The potential of eccrine sweat as a bio-fluid of interest for diagnosis and personalized therapy has not yet been fully evaluated, due to the lack of in-depth sweat characterization studies. Thanks to recent developments in omics, together with the availability of accredited sweat collection methods, the analysis of human sweat may now be envisioned as a standardized, non-invasive test for individualized monitoring and personalized medicine. Here, we characterized individual sweat samples, collected from 28 healthy adult volunteers under the most standardized sampling methodology, by applying optimized shotgun proteomics. The thorough characterization of the sweat proteome allowed the identification of 983 unique proteins from which 344 were identified across all samples. Annotation-wise, the study of the sweat proteome unveiled the over-representation of newly addressed actin dynamics, oxidative stress and proteasome-related functions, in addition to well-described proteolysis and anti-microbial immunity. The sweat proteome composition correlated with the inter-individual variability of sweat secretion parameters. In addition, both gender-exclusive proteins and gender-specific protein abundances were highlighted, despite the high similarity between human female and male sweat proteomes. In conclusion, standardized sample collection coupled with optimized shotgun proteomics significantly improved the depth of sweat proteome coverage, far beyond previous similar studies. The identified proteins were involved in many diverse biological processes and molecular functions, indicating the potential of this bio-fluid as a valuable biological matrix for further studies. Addressing sweat variability, our results prove the proteomic profiling of sweat to be a promising bio-fluid analysis for individualized, non-invasive monitoring and personalized medicine.

Funder

Fund for Scientific Research

Biomed Hub Technology Support

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3