Abstract
Bone remodeling is a continuous process of bone synthesis and destruction that is regulated by osteoblasts and osteoclasts. Here, we investigated the anti-osteoporotic effects of morroniside in mouse preosteoblast MC3T3-E1 cells and mouse primary cultured osteoblasts and osteoclasts in vitro and ovariectomy (OVX)-induced mouse osteoporosis in vivo. Morroniside treatment enhanced alkaline phosphatase activity and positively stained cells via upregulation of osteoblastogenesis-associated genes in MC3T3-E1 cell lines and primary cultured osteoblasts. However, morroniside inhibited tartrate-resistant acid phosphatase activity and TRAP-stained multinucleated positive cells via downregulation of osteoclast-mediated genes in primary cultured monocytes. In the osteoporotic animal model, ovariectomized (OVX) mice were administered morroniside (2 or 10 mg/kg/day) for 12 weeks. Morroniside prevented OVX-induced bone mineral density (BMD) loss and reduced bone structural compartment loss in the micro-CT images. Taken together, morroniside promoted increased osteoblast differentiation and decreased osteoclast differentiation in cells, and consequently inhibited OVX-induced osteoporotic pathogenesis in mice. This study suggests that morroniside may be a potent therapeutic single compound for the prevention of osteoporosis.
Funder
National Research Foundation of Korea (NRF) grant
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献