Fab Advances in Fabaceae for Abiotic Stress Resilience: From ‘Omics’ to Artificial Intelligence

Author:

Singh Dharmendra,Chaudhary Priya,Taunk Jyoti,Singh Chandan Kumar,Singh DeeptiORCID,Tomar Ram Sewak Singh,Aski MuraleedharORCID,Konjengbam Noren Singh,Raje Ranjeet Sharan,Singh Sanjay,Sengar Rakesh SinghORCID,Yadav Rajendra Kumar,Pal Madan

Abstract

Legumes are a better source of proteins and are richer in diverse micronutrients over the nutritional profile of widely consumed cereals. However, when exposed to a diverse range of abiotic stresses, their overall productivity and quality are hugely impacted. Our limited understanding of genetic determinants and novel variants associated with the abiotic stress response in food legume crops restricts its amelioration. Therefore, it is imperative to understand different molecular approaches in food legume crops that can be utilized in crop improvement programs to minimize the economic loss. ‘Omics’-based molecular breeding provides better opportunities over conventional breeding for diversifying the natural germplasm together with improving yield and quality parameters. Due to molecular advancements, the technique is now equipped with novel ‘omics’ approaches such as ionomics, epigenomics, fluxomics, RNomics, glycomics, glycoproteomics, phosphoproteomics, lipidomics, regulomics, and secretomics. Pan-omics—which utilizes the molecular bases of the stress response to identify genes (genomics), mRNAs (transcriptomics), proteins (proteomics), and biomolecules (metabolomics) associated with stress regulation—has been widely used for abiotic stress amelioration in food legume crops. Integration of pan-omics with novel omics approaches will fast-track legume breeding programs. Moreover, artificial intelligence (AI)-based algorithms can be utilized for simulating crop yield under changing environments, which can help in predicting the genetic gain beforehand. Application of machine learning (ML) in quantitative trait loci (QTL) mining will further help in determining the genetic determinants of abiotic stress tolerance in pulses.

Funder

Indian Agricultural Research Institute

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3