Global Proteotoxicity Caused by Human β2 Microglobulin Variants Impairs the Unfolded Protein Response in C. elegans

Author:

Good Sarah C.,Dewison Katherine M.ORCID,Radford Sheena E.,van Oosten-Hawle PatricijaORCID

Abstract

Aggregation of β2 microglobulin (β2m) into amyloid fibrils is associated with systemic amyloidosis, caused by the deposition of amyloid fibrils containing the wild-type protein and its truncated variant, ΔN6 β2m, in haemo-dialysed patients. A second form of familial systemic amyloidosis caused by the β2m variant, D76N, results in amyloid deposits in the viscera, without renal dysfunction. Although the folding and misfolding mechanisms of β2 microglobulin have been widely studied in vitro and in vivo, we lack a comparable understanding of the molecular mechanisms underlying toxicity in a cellular and organismal environment. Here, we established transgenic C. elegans lines expressing wild-type (WT) human β2m, or the two highly amyloidogenic naturally occurring variants, D76N β2m and ΔN6 β2m, in the C. elegans bodywall muscle. Nematodes expressing the D76N β2m and ΔN6 β2m variants exhibit increased age-dependent and cell nonautonomous proteotoxicity associated with reduced motility, delayed development and shortened lifespan. Both β2m variants cause widespread endogenous protein aggregation contributing to the increased toxicity in aged animals. We show that expression of β2m reduces the capacity of C. elegans to cope with heat and endoplasmic reticulum (ER) stress, correlating with a deficiency to upregulate BiP/hsp-4 transcripts in response to ER stress in young adult animals. Interestingly, protein secretion in all β2m variants is reduced, despite the presence of the natural signal sequence, suggesting a possible link between organismal β2m toxicity and a disrupted ER secretory metabolism.

Funder

Wellcome Trust

National Centre for the Replacement, Refinement and Reduction of Animals in Research

Biotechnology and Biological Sciences Research Council

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3