Sphingosine-1 Phosphate Lyase Regulates Sensitivity of Pancreatic Beta-Cells to Lipotoxicity

Author:

Tang Yadi,Plötz Thomas,Gräler Markus H.ORCID,Gurgul-Convey EwaORCID

Abstract

Elevated levels of free fatty acids (FFAs) have been related to pancreatic beta-cell failure in type 2 diabetes (T2DM), though the underlying mechanisms are not yet fully understood. FFAs have been shown to dysregulate formation of bioactive sphingolipids, such as ceramides and sphingosine-1 phosphate (S1P) in beta-cells. The aim of this study was to analyze the role of sphingosine-1 phosphate lyase (SPL), a key enzyme of the sphingolipid pathway that catalyzes an irreversible degradation of S1P, in the sensitivity of beta-cells to lipotoxicity. To validate the role of SPL in lipotoxicity, we modulated SPL expression in rat INS1E cells and in human EndoC-βH1 beta-cells. SPL overexpression in INS1E cells (INS1E-SPL), which are characterized by a moderate basal expression level of SPL, resulted in an acceleration of palmitate-mediated cell viability loss, proliferation inhibition and induction of oxidative stress. SPL overexpression affected the mRNA expression of ER stress markers and mitochondrial chaperones. In contrast to control cells, in INS1E-SPL cells no protective effect of oleate was detected. Moreover, Plin2 expression and lipid droplet formation were strongly reduced in OA-treated INS1E-SPL cells. Silencing of SPL in human EndoC-βH1 beta-cells, which are characterized by a significantly higher SPL expression as compared to rodent beta-cells, resulted in prevention of FFA-mediated caspase-3/7 activation. Our findings indicate that an adequate control of S1P degradation by SPL might be crucially involved in the susceptibility of pancreatic beta-cells to lipotoxicity.

Funder

Deutsche Diabetes Gesellschaft

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3