LRGCPND: Predicting Associations between ncRNA and Drug Resistance via Linear Residual Graph Convolution

Author:

Li Yizhan,Wang Runqi,Zhang Shuo,Xu Hanlin,Deng LeiORCID

Abstract

Accurate inference of the relationship between non-coding RNAs (ncRNAs) and drug resistance is essential for understanding the complicated mechanisms of drug actions and clinical treatment. Traditional biological experiments are time-consuming, laborious, and minor in scale. Although several databases provide relevant resources, computational method for predicting this type of association has not yet been developed. In this paper, we leverage the verified association data of ncRNA and drug resistance to construct a bipartite graph and then develop a linear residual graph convolution approach for predicting associations between non-coding RNA and drug resistance (LRGCPND) without introducing or defining additional data. LRGCPND first aggregates the potential features of neighboring nodes per graph convolutional layer. Next, we transform the information between layers through a linear function. Eventually, LRGCPND unites the embedding representations of each layer to complete the prediction. Results of comparison experiments demonstrate that LRGCPND has more reliable performance than seven other state-of-the-art approaches with an average AUC value of 0.8987. Case studies illustrate that LRGCPND is an effective tool for inferring the associations between ncRNA and drug resistance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3