Recent Advances in Metal-Based Magnetic Composites as High-Efficiency Candidates for Ultrasound-Assisted Effects in Cancer Therapy

Author:

Wang Zhenyu,He Xiaoxiao,Chen Shiyue,He Chengdian,Wang Teng,Mao Xiang

Abstract

Metal-based magnetic materials have been used in different fields due to their particular physical or chemical properties. The original magnetic properties can be influenced by the composition of constituent metals. As utilized in different application fields, such as imaging monitoring, thermal treatment, and combined integration in cancer therapies, fabricated metal-based magnetic materials can be doped with target metal elements in research. Furthermore, there is one possible new trend in human activities and basic cancer treatment. As has appeared in characterizations such as magnetic resonance, catalytic performance, thermal efficiency, etc., structural information about the real morphology, size distribution, and composition play important roles in its further applications. In cancer studies, metal-based magnetic materials are considered one appropriate material because of their ability to penetrate biological tissues, interact with cellular components, and induce noxious effects. The disruptions of cytoskeletons, membranes, and the generation of reactive oxygen species (ROS) further influence the efficiency of metal-based magnetic materials in related applications. While combining with cancer cells, these magnetic materials are not only applied in imaging monitoring focus areas but also could give the exact area information in the cure process while integrating ultrasound treatment. Here, we provide an overview of metal-based magnetic materials of various types and then their real applications in the magnetic resonance imaging (MRI) field and cancer cell treatments. We will demonstrate advancements in using ultrasound fields co-worked with MRI or ROS approaches. Besides iron oxides, there is a super-family of heterogeneous magnetic materials used as magnetic agents, imaging materials, catalytic candidates in cell signaling and tissue imaging, and the expression of cancer cells and their high sensitivity to chemical, thermal, and mechanical stimuli. On the other hand, the interactions between magnetic candidates and cancer tissues may be used in drug delivery systems. The materials’ surface structure characteristics are introduced as drug loading substrates as much as possible. We emphasize that further research is required to fully characterize the mechanisms of underlying ultrasounds induced together, and their appropriate relevance for materials toxicology and biomedical applications.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3