The Same against Many: AtCML8, a Ca2+ Sensor Acting as a Positive Regulator of Defense Responses against Several Plant Pathogens

Author:

Zhu XiaoyangORCID,Mazard Julie,Robe Eugénie,Pignoly Sarah,Aguilar Marielle,San Clemente Hélène SanORCID,Lauber Emmanuelle,Berthomé RichardORCID,Galaud Jean-Philippe

Abstract

Calcium signals are crucial for the activation and coordination of signaling cascades leading to the establishment of plant defense mechanisms. Here, we studied the contribution of CML8, an Arabidopsis calmodulin-like protein in response to Ralstonia solanacearum and to pathogens with different lifestyles, such as Xanthomonas campestris pv. campestris and Phytophtora capsici. We used pathogenic infection assays, gene expression, RNA-seq approaches, and comparative analysis of public data on CML8 knockdown and overexpressing Arabidopsis lines to demonstrate that CML8 contributes to defense mechanisms against pathogenic bacteria and oomycetes. CML8 gene expression is finely regulated at the root level and manipulated during infection with Ralstonia, and CML8 overexpression confers better plant tolerance. To understand the processes controlled by CML8, genes differentially expressed at the root level in the first hours of infection have been identified. Overexpression of CML8 also confers better tolerance against Xanthomonas and Phytophtora, and most of the genes differentially expressed in response to Ralstonia are differentially expressed in these different pathosystems. Collectively, CML8 acts as a positive regulator against Ralstonia solanaceraum and against other vascular or root pathogens, suggesting that CML8 is a multifunctional protein that regulates common downstream processes involved in the defense response of plants to several pathogens.

Funder

Agence Nationale de la Recherche

South China Agricultural University

Guangdong Provincial Pearl River Talents Program

LabEx TULIP

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3