Heterogeneity of Response to Iron-Based Metallodrugs in Glioblastoma Is Associated with Differences in Chemical Structures and Driven by FAS Expression Dynamics and Transcriptomic Subtypes

Author:

Vessières AnneORCID,Quissac Emie,Lemaire Nolwenn,Alentorn Agusti,Domeracka Patrycja,Pigeon Pascal,Sanson Marc,Idbaih AhmedORCID,Verreault MaïtéORCID

Abstract

Glioblastoma (GBM) is the most frequent and deadliest primary brain cancer in adults, justifying the search for new treatments. Some members of the iron-based ferrocifen family have demonstrated a high cytotoxic effect on various cancer cell lines via innovative mechanisms of action. Here, we evaluated the antiproliferative activity by wst-1 assay of six ferrocifens in 15 molecularly diverse GBM patient-derived cell lines (PDCLs). In five out of six compounds, the half maximal inhibitory concentration (IC50) values varied significantly (10 nM < IC50 < 29.8 µM) while the remaining one (the tamoxifen-like complex) was highly cytotoxic against all PDCLs (mean IC50 = 1.28 µM). The pattern of response was comparable for the four ferrocifens bearing at least one phenol group and differed widely from those of the tamoxifen-like complex and the complex with no phenol group. An RNA sequencing differential analysis showed that response to the diphenol ferrocifen relied on the activation of the Death Receptor signaling pathway and the modulation of FAS expression. Response to this complex was greater in PDCLs from the Mesenchymal or Proneural transcriptomic subtypes compared to the ones from the Classical subtype. These results provide new information on the mechanisms of action of ferrocifens and highlight a broader diversity of behavior than previously suspected among members of this family. They also support the case for a molecular-based personalized approach to future use of ferrocifens in the treatment of GBM.

Funder

Agence Nationale de la Recherche

Fondation ARC pour la Recherche sur le Cancer

AVIESAN

French National Cancer Institute

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3