Quantitative 3D Association of Geological Factors and Geophysical Fields with Mineralization and Its Significance for Ore Prediction: An Example from Anqing Orefield, China

Author:

Qin YaozuORCID,Liu Liangming

Abstract

Quantitative 3D spatial association of geological factors and geophysical fields with orebodies is critical for ore prediction. The Anqing orefield, a principal Cu–Fe orefield in China, is closely associated with the Yueshan intrusion. By compiling the data from drilling and tunnelling exploration, Controlled Source Audiofrequency Magnetotelluric (CSAMT) surveying and the computational modelling of magmatic intrusion’s cooling process, we constructed models of the Yueshan intrusion, ore-favourable carbonate formation, orebodies, resistivity field and volume strain field. These models are used as evidential factors to analyse their spatial association with mineralization by the weights-of-evidence (WofE) method. The location of orebodies is closely related to the shape of the contact zone of the Yueshan intrusion. The spaces with the distance ≤200 m to the concaves that were selected by minimum principal curvature (|Kmin| ≥ 0.0025) from contact zones, are very favourable for localization of orebodies. Most orebodies are not located in the spaces of the lowest resistivity, suggesting that the lowest resistivity cannot be used as an indicator for mineralization. The spaces with higher positive volumetric strain have higher positive weights with orebodies, implying that the mineralization is positively related to the positive volumetric strain. The spaces of all evidential factors that had positive correlation with mineralization were integrated to create a 3D prospectivity map by calculating posterior probability. Five areas with higher posterior probability, indicating higher prospectivity potential, are selected as targets for future exploration.

Funder

NSFC

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3