Flexible and Robust Triboelectric Nanogenerators with Chemically Prepared Metal Electrodes and a Plastic Contact Interface Based on Low-Cost Pressure-Sensitive Adhesive

Author:

Wang Shuai-Chen12ORCID,Zhang Binbin23,Kang Lijing2,Liang Cunman1,Chen Dongdong4,Liu Guoqiang5,Guo Xuyun6

Affiliation:

1. Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China

2. Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, New Territories, Hong Kong SAR 999077, China

3. Biomedical Engineering, The City University of Hong Kong, New Territories, Hong Kong SAR 999077, China

4. Epro Advance Technology Limited, Hong Kong Factory, 35 Wang Lok Street, Yuen Long Industrial Estate, New Territories, Hong Kong SAR 999077, China

5. Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China

6. School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio-Engineering Research Centre (AMBER), D02 PN40 Dublin, Ireland

Abstract

Triboelectric nanogenerators (TENGs) are devices that can harvest energy from mechanical motions; such devices can be used to power wearable sensors and various low-power electronics. To increase the lifetime of the device, scientists mainly use the method of making TENG in a hard skeleton to simplify the complex possible relative movements between two triboelectric parts. However, the hard skeletons cannot be embedded in soft and lightweight clothing. To make matters worse, the materials used in the garments must be able to withstand high mechanical forces when worn, such as the pressure of more than 100 KPa exerted by body pressure or everyday knocks. Notably, the TENGs are usually made of fragile materials, such as vacuum-evaporated metal electrodes and nano-sized coatings, on the contact interface; these electrodes and coatings often chip or wear off under the action of external loads. In this work, we succeeded in creating a thin, light-weight, but extremely robust garment-integrated triboelectric nanogenerator (G-TENG) that can be embedded in clothing and pass the water wash test. First, we chemically deposited a durable electrode with flexible properties for G-TENG using a novel technique called polymer-assisted metal deposition (PAMD). The as-formed metal electrodes are firmly bonded to the plastic substrate by a sub-10 nm adhesive polymer brush and can withstand a pressure of 22.5 MPa and a tear force of 0.7 MPa. We then removed the traditionally used fragile nanoparticle materials and the non-durable poly-dimethylsiloxane (PDMS) layer at the triboelectric interface, and then used a cost-effective, durable and slightly flowable pressure-sensitive adhesive to form a plastic contact interface. Such a soft plastic interface can ensure full contact of the triboelectric materials, which is excellent in complex environments and ultimately improves the power generation efficiency of the devices. The as-formed low-cost energy harvesting device could become an industry standard for future smart clothing.

Funder

InnoHK Project on Project 1.1-Wearable intelligent Sensing Engineering WISE at Hong Kong Centre for Cerebro-cardiovascular Health Engineering

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3