When Small Is Not Beautiful: The Unexpected Impacts of Trees and Parcel Size on Metered Water-Use in a Semi-Arid City

Author:

Rasmussen ShaundraORCID,Warziniack TravisORCID,Neel Abbye,O’Neil-Dunne JarlathORCID,McHale Melissa

Abstract

Colorado’s water supply is under threat due to climate change pressures and population growth, however Colorado has been recognized to have some of the most progressive water conservation programs in the country. Limiting outdoor water consumption is an increasingly popular approach to conserving water in semi-arid cities, yet in order to implement effective water reduction and conservation policies, more utilities and city managers need a firm understanding of the local drivers of outdoor water consumption. This research explores the drivers of outdoor water consumption in a semi-arid, medium-sized Colorado city that is projected to undergo significant population growth. We used a combination of correlation and linear regression analyses to identify the key descriptive variables that predict greater water consumption at the household scale. Some results were specific to the development patterns of this medium-sized city, where outdoor water use increased 7% for each additional mile (1.6 km) a household was located from the historic urban center. Similarly, more expensive homes used more water as well. Surprisingly, households with a higher ratio of vegetation cover to parcel size tended toward less water consumption. This result could be because parcels that are shaded by their tree canopy require less irrigation. We discuss these results to assist city managers and policymakers in creating water-efficient landscapes and provide information that can be leveraged to increase awareness for water conservation in a growing, semi-arid city.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference60 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3