Estimation of Surface NO2 Concentrations over Germany from TROPOMI Satellite Observations Using a Machine Learning Method

Author:

Chan Ka Lok,Khorsandi Ehsan,Liu Song,Baier Frank,Valks Pieter

Abstract

In this paper, we present the estimation of surface NO2 concentrations over Germany using a machine learning approach. TROPOMI satellite observations of tropospheric NO2 vertical column densities (VCDs) and several meteorological parameters are used to train the neural network model for the prediction of surface NO2 concentrations. The neural network model is validated against ground-based in situ air quality monitoring network measurements and regional chemical transport model (CTM) simulations. Neural network estimation of surface NO2 concentrations show good agreement with in situ monitor data with Pearson correlation coefficient (R) of 0.80. The results also show that the machine learning approach is performing better than regional CTM simulations in predicting surface NO2 concentrations. We also performed a sensitivity analysis for each input parameter of the neural network model. The validated neural network model is then used to estimate surface NO2 concentrations over Germany from 2018 to 2020. Estimated surface NO2 concentrations are used to investigate the spatio-temporal characteristics, such as seasonal and weekly variations of NO2 in Germany. The estimated surface NO2 concentrations provide comprehensive information of NO2 spatial distribution which is very useful for exposure estimation. We estimated the annual average NO2 exposure for 2018, 2019 and 2020 is 15.53, 15.24 and 13.27 µµg/m3, respectively. While the annual average NO2 concentration of 2018, 2019 and 2020 is only 12.79, 12.60 and 11.15 µµg/m3. In addition, we used the surface NO2 data set to investigate the impacts of the coronavirus disease 2019 (COVID-19) pandemic on ambient NO2 levels in Germany. In general, 10–30% lower surface NO2 concentrations are observed in 2020 compared to 2018 and 2019, indicating the significant impacts of a series of restriction measures to reduce the spread of the virus.

Funder

Bundesministerium für Verkehr und Digitale Infrastruktur

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3