Comparison of the Hydrological Dynamics of Poyang Lake in the Wet and Dry Seasons

Author:

Sun Fangdi,Ma RonghuaORCID,Liu CaixiaORCID,He Bin

Abstract

Poyang Lake is the largest freshwater lake connecting the Yangtze River in China. It undergoes dramatic dynamics from the wet to the dry seasons. A comparison of the hydrological changes between the wet and dry seasons may be useful for understanding the water flows between Poyang Lake and Yangtze River or the river system in the watershed. Gauged measurements and remote sensing datasets were combined to reveal lake area, level and volume changes during 2000–2020, and water exchanges between Poyang Lake and Yangtze River were presented based on the water balance equation. The results showed that in the wet seasons, the lake was usually around 1301.85–3840.24 km2, with an average value of 2800.79 km2. In the dry seasons, the area was around 618.82–2498.70 km2, with an average value of 1242.03 km2. The inundations in the wet seasons were approximately quadruple those in the dry seasons. In summer months, the lake surface tended to be flat, while in winter months, it was inclined, with the angles at around 10′′–16′′. The mean water levels of the wet and dry seasons were separately 13.51 m and 9.06 m, with respective deviations of around 0–2.38 m and 0.38–2.15 m. Monthly lake volume changes were about 7.5–22.64 km3 and 1–5.80 km3 in the wet and dry seasons, respectively. In the wet seasons, the overall contributions of ground runoff, precipitation on the lake surface and lake evaporation were less than the volume flowing into Yangtze River. In the dry seasons, the three contributions decreased by 50%, 50% and 65.75%, respectively. Therefore, lake storages presented a decrease (−7.42 km3/yr) in the wet seasons and an increase (9.39 km3/yr) in the dry seasons. The monthly exchanges between Poyang Lake and Yangtze River were at around −14.22–32.86 km3. Water all flowed from the lake to the river in the wet seasons, and the chance of water flowing from Yangtze River in the dry seasons was only 5.26%.

Funder

National Natural Science Foundation of China-Guangdong Joint Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3