Visual Growth Tracking for Automated Leaf Stage Monitoring Based on Image Sequence Analysis

Author:

Bashyam Srinidhi,Choudhury Sruti Das,Samal Ashok,Awada Tala

Abstract

In this paper, we define a new problem domain, called visual growth tracking, to track different parts of an object that grow non-uniformly over space and time for application in image-based plant phenotyping. The paper introduces a novel method to reliably detect and track individual leaves of a maize plant based on a graph theoretic approach for automated leaf stage monitoring. The method has four phases: optimal view selection, plant architecture determination, leaf tracking, and generation of a leaf status report. The method accepts an image sequence of a plant as the input and automatically generates a leaf status report containing the phenotypes, which are crucial in the understanding of a plant’s growth, i.e., the emergence timing of each leaf, total number of leaves present at any time, the day on which a particular leaf ceased to grow, and the length and relative growth rate of individual leaves. Based on experimental study, three types of leaf intersections are identified, i.e., tip-contact, tangential-contact, and crossover, which pose challenges to accurate leaf tracking in the late vegetative stage. Thus, we introduce a novel curve tracing approach based on an angular consistency check to address the challenges due to intersecting leaves for improved performance. The proposed method shows high accuracy in detecting leaves and tracking them through the vegetative stages of maize plants based on experimental evaluation on a publicly available benchmark dataset.

Funder

Hatch Act capacity

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3