Feasibility Analysis of GNSS-Reflectometry for Monitoring Coastal Hazards

Author:

Kim Su-Kyung,Lee Eunju,Park Jihye,Shin SungwonORCID

Abstract

Coastal hazards, such as a tsunamis and storm surges, are a critical threat to coastal communities that lead to significant loss of lives and properties. To mitigate their impact, event-driven water level changes should be properly monitored. A tide gauge is one of the conventional water level measurement sensors. Still, alternative measurement systems can be needed to compensate for the role of tide gauge for contingency (e.g., broken and absence, etc.). Global Navigation Satellite System (GNSS) is an emerging water level measurement sensor that processes multipath signals reflected by the water surface that is referred to as GNSS-Reflectometry (GNSS-R). In this study, we adopted the GNSS-R technique to monitor tsunamis and storm surges by analyzing event-driven water level changes. To detect the extreme change of water level, enhanced GNSS-R data processing methods were applied which included the utilization of multi-band GNSS signals, determination of optimal processing window, and Kalman filtering for height rate determination. The impact of coastal hazards on water level retrievals was assessed by computing the confidence level of retrieval (CLR) that was computed based on probability of dominant peak representing the roughness of the water surface. The proposed approach was validated by two tsunami events, induced by 2012 Haida Gwaii earthquake and 2015 Chile earthquake, and two storm surge events, induced by 2017 Hurricane Harvey and occurred in Alaska in 2019. The proposed method successfully retrieved the water levels during the storm surge in both cases with the high correlation coefficients with the nearby tide gauge, 0.944, 0.933, 0.987, and 0.957, respectively. In addition, CLRs of four events are distinctive to the type of coastal events. It is confirmed that the tsunami causes the CLR deduction, while for the storm surges, GNSS-R keep high CLR during the event. These results are possibly used as an indicator of each event in terms of storm surge level and tsunami arrival time. This study shows that the proposed approach of GNSS-R based water level retrieval is feasible to monitor coastal hazards that are tsunamis and storm surges, and it can be a promising tool for investigating the coastal hazards to mitigate their impact and for a better decision making.

Funder

Korea Meteorological Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Demonstrating the Potential of Low-Cost GNSS Receiver for tidal monitoring, storms, and flood detecting: example of 2022 Noru Storm in Thua Thien Hue province, Vietnam;Acta Montanistica Slovaca;2024-04-14

2. Ocean Remote Sensing Using Spaceborne GNSS-Reflectometry: A Review;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

3. Observations of River Ice Breakup Using GNSS-IR, SAR, and Machine Learning;IEEE Transactions on Geoscience and Remote Sensing;2024

4. Natural Data Analysis Method Based on Wavelet Filtering and NARX Neural Networks;15th International Conference “Intelligent Systems” (INTELS’22);2023-08-16

5. Cloud-based near real-time sea level monitoring using GNSS reflectometry;GPS Solutions;2023-02-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3