Sulfur Amino Acid Supplementation Abrogates Protective Effects of Caloric Restriction for Enhancing Bone Marrow Regrowth Following Ionizing Radiation

Author:

Hine ChristopherORCID,Treviño-Villarreal J. Humberto,Mejia Pedro,Longchamp Alban,Brace Lear E.,Harputlugil Eylul,Mitchell Sarah J.,Yang JieORCID,Guan YihongORCID,Maciejewski Jaroslaw P.,Jha Babal K.ORCID,Mitchell James R.

Abstract

Radiation therapy damages and depletes total bone marrow (BM) cellularity, compromising safety and limiting effective dosing. Aging also strains total BM and BM hematopoietic stem and progenitor cell (HSPC) renewal and function, resulting in multi-system defects. Interventions that preserve BM and BM HSPC homeostasis thus have potential clinical significance. Here, we report that 50% calorie restriction (CR) for 7-days or fasting for 3-days prior to irradiation improved mouse BM regrowth in the days and weeks post irradiation. Specifically, one week of 50% CR ameliorated loss of total BM cellularity post irradiation compared to ad libitum-fed controls. CR-mediated BM protection was abrogated by dietary sulfur amino acid (i.e., cysteine, methionine) supplementation or pharmacological inhibition of sulfur amino acid metabolizing and hydrogen sulfide (H2S) producing enzymes. Up to 2-fold increased proliferative capacity of ex vivo-irradiated BM isolated from food restricted mice relative to control mice indicates cell autonomy of the protective effect. Pretreatment with H2S in vitro was sufficient to preserve proliferative capacity by over 50% compared to non-treated cells in ex vivo-irradiated BM and BM HSPCs. The exogenous addition of H2S inhibited Ten eleven translocation 2 (TET2) activity in vitro, thus providing a potential mechanism of action. Short-term CR or fasting therefore offers BM radioprotection and promotes regrowth in part via altered sulfur amino acid metabolism and H2S generation, with translational implications for radiation treatment and aging.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Caloric restriction and fasting-mimicking diets in the treatment of cancer patients;Current Opinion in Clinical Nutrition & Metabolic Care;2023-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3