IoT-Based Assessment of a Driver’s Stress Level

Author:

Mattioli Veronica12ORCID,Davoli Luca2ORCID,Belli Laura2ORCID,Gambetta Sara3,Carnevali Luca3ORCID,Sgoifo Andrea3ORCID,Raheli Riccardo1ORCID,Ferrari Gianluigi2ORCID

Affiliation:

1. Multimedia Laboratory, Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy

2. Internet of Things (IoT) Laboratory, Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy

3. Stress Physiology Laboratory, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy

Abstract

Driver Monitoring Systems (DMSs) play a key role in preventing hazardous events (e.g., road accidents) by providing prompt assistance when anomalies are detected while driving. Different factors, such as traffic and road conditions, might alter the psycho-physiological status of a driver by increasing stress and workload levels. This motivates the development of advanced monitoring architectures taking into account psycho-physiological aspects. In this work, we propose a novel in-vehicle Internet of Things (IoT)-oriented monitoring system to assess the stress status of the driver. In detail, the system leverages heterogeneous components and techniques to collect driver (and, possibly, vehicle) data, aiming at estimating the driver’s arousal level, i.e., their psycho-physiological response to driving tasks. In particular, a wearable sensorized bodice and a thermal camera are employed to extract physiological parameters of interest (namely, the heart rate and skin temperature of the subject), which are processed and analyzed with innovative algorithms. Finally, experimental results are obtained both in simulated and real driving scenarios, demonstrating the adaptability and efficacy of the proposed system.

Funder

Electronic Components and Systems for European Leadership

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3