Feedstock-Induced Changes in the Physicochemical Characteristics of Biochars Produced from Different Types of Pecan Wastes

Author:

Zhang Miaomiao12,Peng Fangren12,Yu Jinping3,Liu Zhuangzhuang3ORCID

Affiliation:

1. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

2. College of Forestry, Nanjing Forestry University, Nanjing 210037, China

3. Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China

Abstract

Large amounts of residues are generated in pecan cultivation processes. Biochar is an environmentally friendly way to utilize residues but attempts to prepare and apply biochar with pecan residues are rare. In this study, six types of biochars were produced from pecan branches, trunks, roots, nutshells, husks, and leaves under pyrolysis, and their physicochemical properties were compared to assess their application perspective in environmental and agricultural fields. The yields of six pecan biochars were 32.1%–45.9%, with the highest yield for husk biochar (HB) (45.9%). Among the pecan biochars, trunk biochar (TB) and root biochar (RB) had much larger specific surface areas. Branch biochar (BB), TB, and RB presented tubular structures with elliptical pores, while nutshell biochar (NSB), HB, and leaf biochar (LB) appeared flaky or as clustered structures with relatively rougher outer surfaces and irregular pores. The functional group types of pecan biochars were generally similar, but the intensities of the peak near 2900 cm−1 in BB were obviously higher than those of the other biochars. RB and LB contained significantly more ash and volatile than those of the other pecan biochars, with the highest fixed carbon content being found in NSB (70.1%). All of the pecan biochars were alkaline (7.90–9.87), and HB, LB, and NSB had significantly higher pH values than those of the other biochars. Elemental analysis indicated that RB, NSB, and LB had higher carbon levels (more than 70%) with lower O/C ratios (no more than 0.2). HB possessed a relatively high content of nitrogen, potassium, magnesium; the phosphorus content was highest in NSB; LB had the highest calcium content. The results of principal component analysis showed that BB, LB, and NSB were clustered in the same quadrant with relatively close relationships. The results of this study can guide the utilization of pecan wastes and their application as biochar in different fields.

Funder

National Key Research and Development Project of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3