Advancements and Challenges in IoT Simulators: A Comprehensive Review

Author:

Almutairi Reham12ORCID,Bergami Giacomo1ORCID,Morgan Graham1ORCID

Affiliation:

1. Faculty of Science, Agriculture and Engineering, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK

2. College of Computer Science and Engineering, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia

Abstract

The Internet of Things (IoT) has emerged as an important concept, bridging the physical and digital worlds through interconnected devices. Although the idea of interconnected devices predates the term “Internet of Things”, which was coined in 1999 by Kevin Ashton, the vision of a seamlessly integrated world of devices has been accelerated by advancements in wireless technologies, cost-effective computing, and the ubiquity of mobile devices. This study aims to provide an in-depth review of existing and emerging IoT simulators focusing on their capabilities and real-world applications, and discuss the current challenges and future trends in the IoT simulation area. Despite substantial research in the IoT simulation domain, many studies have a narrow focus, leaving a gap in comprehensive reviews that consider broader IoT development metrics, such as device mobility, energy models, Software-Defined Networking (SDN), and scalability. Notably, there is a lack of literature examining IoT simulators’ capabilities in supporting renewable energy sources and their integration with Vehicular Ad-hoc Network (VANET) simulations. Our review seeks to address this gap, evaluating the ability of IoT simulators to simulate complex, large-scale IoT scenarios and meet specific developmental requirements, as well as examining the current challenges and future trends in the field of IoT simulation. Our systematic analysis has identified several significant gaps in the current literature. A primary concern is the lack of a generic simulator capable of effectively simulating various scenarios across different domains within the IoT environment. As a result, a comprehensive and versatile simulator is required to simulate the diverse scenarios occurring in IoT applications. Additionally, there is a notable gap in simulators that address specific security concerns, particularly battery depletion attacks, which are increasingly relevant in IoT systems. Furthermore, there is a need for further investigation and study regarding the integration of IoT simulators with traffic simulation for VANET environments. In addition, it is noteworthy that renewable energy sources are underrepresented in IoT simulations, despite an increasing global emphasis on environmental sustainability. As a result of these identified gaps, it is imperative to develop more advanced and adaptable IoT simulation tools that are designed to meet the multifaceted challenges and opportunities of the IoT domain.

Funder

Newcastle University

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3