Grapevine Microbiota Reflect Diversity among Compartments and Complex Interactions within and among Root and Shoot Systems

Author:

Swift Joel F.ORCID,Hall Megan E.,Harris Zachary N.,Kwasniewski Misha T.,Miller Allison J.

Abstract

Grafting connects root and shoot systems of distinct individuals, bringing microbial communities of different genotypes together in a single plant. How do root system and shoot system genotypes influence plant microbiota in grafted grapevines? To address this, we utilized clonal replicates of the grapevine ‘Chambourcin’, growing ungrafted and grafted to three different rootstocks in three irrigation treatments. Our objectives were to (1) characterize the microbiota (bacteria and fungi) of below-ground compartments (roots, adjacent soil) and above-ground compartments (leaves, berries), (2) determine how rootstock genotype, irrigation, and their interaction influences grapevine microbiota in different compartments, and (3) investigate abundance of microorganisms implicated in the late-season grapevine disease sour rot (Acetobacterales and Saccharomycetes). We found that plant compartment had the largest influence on microbial diversity. Neither rootstock genotype nor irrigation significantly influenced microbial diversity or composition. However, differential abundance of bacterial and fungal taxa varied as a function of rootstock and irrigation treatment; in particular, Acetobacterales and Saccharomycetes displayed higher relative abundance in berries of grapevines grafted to ‘1103P’ and ‘SO4’ rootstocks and varied across irrigation treatments. This study demonstrates that grapevine compartments retain distinct microbiota and identifies associations between rootstock genotypes, irrigation treatment, and the relative abundance of agriculturally relevant microorganisms in the berries.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3