Influence of Temperature and Sulfate Concentration on the Sulfate/Sulfite Reduction Prokaryotic Communities in the Tibetan Hot Springs

Author:

Ma Li,She Weiyu,Wu GengORCID,Yang Jian,Phurbu Dorji,Jiang HongchenORCID

Abstract

The distribution and diversity of sulfate/sulfite reduction prokaryotic (SRP) communities in hot springs from the Quzhuomu and Daggyai Geothermal Zone of Tibetan, China, was reported for the first time. In hot springs that are naturally hyperthermal and anoxic, the sulfur cycle is one of the most active cycles of the elements. The distribution of SRP in response to temperature is of great importance to the understanding of biogeochemical cycling of sulfur in geothermal features. Little is known about the SRP in geothermal zone. In this study, the diversity of SRP was investigated in the sediments from the Daggyai and Quzhuomu geothermal zone using PCR amplification, cloning and sequencing of the dissimilatory sulfite reductase beta subunit gene (dsrB). The abundance of dsrB and 16S rRNA genes, were determined by quantitative polymerase chain reactions. In addition, correlations of the SRP assemblages with environmental factors were analyzed by the aggregated boosted tree (ABT) statistical analysis. The results showed that SRP populations were diverse, but were mainly composed of Desulfobacterales, Desulfovibrionales, Syntrophobacterales, Clostridia and Nitrospirales, and large fraction (25%) of novel sequences have branched groups in the dsrB phylogenetic tree. In Quzhuomu geothermal zone, sulfate-rich hot springs are characterized by thick bacterial mats that are green or red and the SRP populations mainly appear at mid-temperature (50 °C to 70 °C). In low-sulfate hot springs in the Daggyai geothermal zone, although gray or pink streamers are widely formed at 60 °C to 80 °C, they prefer to inhabit in green mat at lower temperature (30 °C to 50 °C). With increasing temperature, the diversity of the dsrB gene at the OTU level (cutoff 97%) decreased, while its relative abundance increased. This result suggests that temperature played an important role in affecting dsrB gene distribution.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3