Response of Soil Fungal Diversity and Community Composition to Varying Levels of Bamboo Biochar in Red Soils

Author:

Tarin Muhammad Waqqas KhanORCID,Fan LiliORCID,Xie DejinORCID,Tayyab MuhammadORCID,Rong JundongORCID,Chen Lingyan,Muneer Muhammad AtifORCID,Zheng YushanORCID

Abstract

Soil fungi play a vital role in soil nutrient dynamics, but knowledge of their diversity and community composition in response to biochar addition into red soil is either limited or inconsistent. Therefore, we determined the impact of bamboo biochar (BB) with increasing concentrations (0, 5, 20, and 80 g kg−1 of soil, referred to as B0, BB5, BB20, and BB80, respectively) on soil physicochemical properties and fungal communities (Illumina high-throughput sequencing) in red soil under Fokenia hodginsii (Fujian cypress). We found that increasing BB levels effectively raised the soil pH and soil nutrients, particularly under BB80. BB addition significantly increased the relative abundance of important genera, i.e., Basidiomycota, Mucoromycota, and Chytridiomycota that could play a key role in ecological functioning, e.g., wood degradation and litter decomposition, improvement in plant nutrients uptake, and resistance to several abiotic stress factors. Soil amended with BB exhibited a substantial ability to increase the fungal richness and diversity; BB80 > BB20 > BB5 > B0. Basidiomycota, Mucoromycota, Glomeromycota, Rozellomycota, Aphelidiomycota, Kickxellomycota, and Planctomycetes were positively associated with soil pH, total nitrogen, phosphorous, and carbon, and available potassium and phosphorous. Besides, the correlation analysis between the soil fungal communities and soil properties also showed that soil pH was the most influential factor in shaping the soil fungal communities in the red soil. These findings have significant implications for a comprehensive understanding of how to ameliorate acidic soils with BB addition, as well as for future research on sustainable forest management, which might increase soil fungi richness, diversity, and functionality in acidic soils.

Funder

Science and Technology Major Projects of Fujian Province

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3