Methanogenic Biodegradation of iso-Alkanes by Indigenous Microbes from Two Different Oil Sands Tailings Ponds

Author:

Mohamad Shahimin Mohd FaidzORCID,Foght Julia M.ORCID,Siddique Tariq

Abstract

iso-Alkanes, a major fraction of the solvents used in bitumen extraction from oil sand ores, are slow to biodegrade in anaerobic tailings ponds. We investigated methanogenic biodegradation of iso-alkane mixtures comprising either three (2-methylbutane, 2-methylpentane, 3-methylpentane) or five (2-methylbutane, 2-methylpentane, 2-methylhexane, 2-methylheptane, 2-methyloctane) iso-alkanes representing paraffinic and naphtha solvents, respectively. Mature fine tailings (MFT) collected from two tailings ponds, having different residual solvents (paraffinic solvent in Canadian Natural Upgrading Limited (CNUL) and naphtha in Canadian Natural Resources Limited (CNRL)), were amended separately with the two mixtures and incubated in microcosms for ~1600 d. The indigenous microbes in CNUL MFT produced methane from the three-iso-alkane mixture after a lag of ~200 d, completely depleting 2-methylpentane while partially depleting 2-methylbutane and 3-methylpentane. CNRL MFT exhibited a similar degradation pattern for the three iso-alkanes after a lag phase of ~700 d, but required 1200 d before beginning to produce methane from the five-iso-alkane mixture, preferentially depleting components in the order of decreasing carbon chain length. Peptococcaceae members were key iso-alkane-degraders in both CNUL and CNRL MFT but were associated with different archaeal partners. Co-dominance of acetoclastic (Methanosaeta) and hydrogenotrophic (Methanolinea and Methanoregula) methanogens was observed in CNUL MFT during biodegradation of three-iso-alkanes whereas CNRL MFT was enriched in Methanoregula during biodegradation of three-iso-alkanes and in Methanosaeta with five-iso-alkanes. This study highlights the different responses of indigenous methanogenic microbial communities in different oil sands tailings ponds to iso-alkanes.

Funder

Natural Sciences and Engineering Research Council of Canada

Helmholtz-Alberta Initiative at University of Alberta

Canada Foundation for Innovation

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Reference49 articles.

1. Dissimilatory sulfate- and sulfur-reducing prokaryotes;Rabus,2013

2. De Microbial hydrocarbon degradation: Efforts to understand biodegradation in petroleum reservoirs;Sierra-garcia,2013

3. Hexadecane decay by methanogenesis

4. Anaerobic biodegradation of alkanes by enriched consortia under four different reducing conditions

5. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3