Azole-Resistant Aspergillus fumigatus Harboring the TR34/L98H Mutation: First Report in Portugal in Environmental Samples

Author:

Gonçalves PauloORCID,Melo AryseORCID,Dias Marta,Almeida BeatrizORCID,Caetano Liliana AranhaORCID,Veríssimo Cristina,Viegas CarlaORCID,Sabino RaquelORCID

Abstract

Introduction: The frequency in detection of azole-resistant Aspergillus fumigatus isolates has increased since 2010. In Portugal, the section Fumigati is one of the most frequent, and resistant strains to have been found in clinical and environmental contexts. Although several cryptic species within the Fumigati section show intrinsic resistance to azoles, one factor driving (acquired) resistance is selective pressure deriving from the extensive use of azoles. This is particularly problematic in occupational environments where high fungal loads are expected, and where there is an increased risk of human exposure and infection, with impact on treatment success and disease outcome. The mechanisms of resistance are diverse, but mainly associated with mutations in the cyp51A gene. Despite TR34/L98H being the most frequent mutation described, it has only been detected in clinical specimens in Portugal. Methods: We analyzed 99 A. fumigatus isolates from indoor environments (healthcare facilities, spas, one dairy and one waste sorting unit) collected from January 2018 to February 2019 in different regions of Portugal. Isolates were screened for resistance to itraconazole, voriconazole and posaconazole by culture, and resistance was confirmed by broth microdilution. Sequencing of the cyp51A gene and its promoter was performed to detect mutations associated with resistance. Results: Overall, 8.1% of isolates were able to grow in the presence of at least one azole, and 3% (isolated from the air in a dairy and from filtering respiratory protective devices in a waste sorting industry) were pan-azole-resistant, bearing the TR34/L98H mutation. Conclusion: For the first time in Portugal, we report environmental isolates bearing the TR34/L98H mutation, isolated from occupational environments. Environmental surveillance of the emergence of azole-resistant A. fumigatus sensu stricto strains is needed, to ensure proper and timely implementation of control policies that may have a positive impact on public and occupational health.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3