Abstract
In recent years, Blautia has attracted attention for its role in ameliorating host diseases. In particular, Blautia producta DSM 2950 has been considered a potential probiotic due to its ability to mitigate inflammation in poly(I:C) induced HT-29 cells. Thus, to promote the development of indigenous intestinal microorganisms with potential probiotic function, we conducted a comprehensive experimental analysis of DSM 2950 to determine its safety. This comprised a study of its potential virulence genes, antibiotic resistance genes, genomic islands, antibiotic resistance, and hemolytic activity and a 14-day test of its acute oral toxicity in mice. The results indicated no toxin-related virulence genes in the DSM 2950 genome. Most of the genomic islands in DSM 2950 were related to metabolism, rather than virulence expression. DSM 2950 was sensitive to most of the tested antibiotics but was tolerant of treatment with kanamycin, neomycin, clindamycin, or ciprofloxacin, probably because it possessed the corresponding antibiotic resistance genes. Oral acute toxicity tests indicated that the consumption of DSM 2950 does not cause toxic side effects in mice. Overall, the safety profile of DSM 2950 confirmed that it could be a candidate probiotic for use in food and pharmaceutical preparations.
Funder
National Natural Science Foundation of China
National First-Class Discipline Program of Food Science and Technology
Subject
Virology,Microbiology (medical),Microbiology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献