Acid Stable Yeast Cell-Associated Tannase with High Capability in Gallated Catechin Biotransformation

Author:

Leangnim Nalapat,Aisara Jakkrit,Unban Kridsada,Khanongnuch ChartchaiORCID,Kanpiengjai ApinunORCID

Abstract

Previously, nine tannin-tolerant and tannase-producing yeasts were isolated from Miang; all produced cell-associated tannase (CAT) during growth in tannin substrate. Among which, only CAT from Sporidiobolus ruineniae showed better stability than its purified form. Yet, it is of particular interest to directly characterize CATs from the latter yeasts. In this study, four CATs from yeasts, namely Cyberlindnera rhodanensis A22.3, Candida sp. A39.3, Debaryomyces hansenii A45.1, and Cy. rhodanensis A45.3 were characterized. The results indicate that all CATs were produced within the same production yield (11 mU/mL). Most CATs exhibited similar pH and temperature optima and stabilities, except for CAT from Cy. rhodanensis A22.3. This CAT was assigned as acid-stable tannase due to its unusual optimum pH of 2.0 with pH stability and half-life thermostability in the range of pH 2.0–4.0, and 70 °C, respectively. All CATs demonstrated high substrate specificity toward epigallocatechin gallate and epicatechin gallate, thus forming epigallocatechin and epicatechin, respectively. Moreover, they showed operational stability to repeated use for up to five cycles without loss of the initial activity. Therefore, CATs from these yeasts could be useful for the extraction and biotransformation of tea catechins and related applications.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3