Optimization of Culture Conditions and Production of Bio-Fungicides from Trichoderma Species under Solid-State Fermentation Using Mathematical Modeling

Author:

Mulatu AfrasaORCID,Alemu Tesfaye,Megersa Negussie,Vetukuri Ramesh R.ORCID

Abstract

Agro-industrial wastes suitable for economical and high mass production of novel Trichoderma species under solid-state fermentation were identified by optimizing the culture conditions using a mathematical model and evaluating the viability of the formulated bio-product. Fourteen inexpensive, locally available, organic substrates and cereals were examined using a one-factor-at-a-time experiment. The fungus colonized nearly all substrates after 21 days of incubation, although the degree of colonization and conidiation varied among the substrates. A mixture of wheat bran and white rice (2:1 w/w) was found to support maximum growth of T. asperellum AU131 (3.2 × 107 spores/g dry substrate) and T. longibrachiatum AU158 (3.5 × 107 spores/g dry substrate). Using a fractional factorial design, the most significant growth factors influencing biomass production were found to be temperature, moisture content, inoculum concentration, and incubation period (p ≤ 0.05). Analysis of variance of a Box–Behnken design showed that the regression model was highly significant (p ≤ 0.05) with F-values of 10.38 (P = 0.0027, T. asperellum AU131) and 12.01 (p < 0.0017, T. longibrachiatum AU158). Under optimal conditions, maximum conidia yield of log10 (8.6) (T. asperellum AU131) and log10(9.18) (T. longibrachiatum) were obtained. For wettable powder Trichoderma species formulations, it was possible to maintain conidial viability at room temperature (25 °C) for eight months at concentrations above 106 CFU/g.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Reference93 articles.

1. Large‐scale Trichoderma diversity was associated with ecosystem, climate and geographic location

2. Trichoderma: A multi-purpose tool for integrated pest management;Lorito,2015

3. Trichoderma spp. – application and prospects for use in organic farming and industry

4. Novel potential of Trichoderma species as biocontrol agent;Hyder;J. Entomol. Zool. Stud.,2017

5. Unraveling the efficient applications of secondary metabolites of various Trichoderma spp.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3