Bacterial Succession through the Artisanal Process and Seasonal Effects Defining Bacterial Communities of Raw-Milk Adobera Cheese Revealed by High Throughput DNA Sequencing

Author:

Ruvalcaba-Gómez José M.ORCID,Delgado-Macuil Raúl J.,Zelaya-Molina Lily X.ORCID,Maya-Lucas Otoniel,Ruesga-Gutiérrez EdmundoORCID,Anaya-Esparza Luis M.ORCID,Villagrán-de la Mora ZuamíORCID,López-de la Mora David A.,Arteaga-Garibay Ramón I.ORCID

Abstract

The bacterial community of the artisanal Adobera cheese from Los Altos de Jalisco was described through high-throughput sequencing of 16S rRNA gene libraries. Samples were collected in two different seasons (dry and rainy) during four key steps of the manufacturing process (raw milk, fresh curd, matured curd, and cheese). Bacterial diversity was higher in early steps in comparison with the final elaboration stages. Firmicutes and Proteobacteria were the most abundant phyla, strongly represented by the Streptococcaceae, Enterobacteriaceae and Lactobacillaceae families, and core bacteria genera such as Streptococcus spp., Lactococcus spp., and Lactobacillus spp. Undesirable bacteria, including Pseudomonas spp. and Acinetobacter spp., were also detected in raw milk but almost undetectable at the end of the cheese manufacturing process, and seemed to be displaced by lactic-acid bacteria-related genera. Seasonal effects were observed on the community structure but did not define the core microbiota composition. Predictive metabolism was related to membrane transport, and amino-acid, lipid, and carbohydrate metabolism pathways. Our results contribute to deduce the role of bacteria involved in Adobera cheese manufacturing in terms of the metabolism involved, cheese microbial safety, and how undesirable bacterial populations could be regulated by process standardization as a potential tool to improve safety.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3