Abstract
Rice monoculture in acid sulfate soils (ASSs) is affected by a wide range of abiotic and biotic constraints, including rice blast caused by Pyricularia oryzae. To progress towards a more sustainable agriculture, our research aimed to screen the biocontrol potential of indigenous Bacillus spp. against blast disease by triggering induced systemic resistance (ISR) via root application and direct antagonism. Strains belonging to the B. altitudinis and B. velezensis group could protect rice against blast disease by ISR. UPLC–MS and marker gene replacement methods were used to detect cyclic lipopeptide (CLiP) production and construct CLiPs deficient mutants of B. velezensis, respectively. Here we show that the CLiPs fengycin and iturin are both needed to elicit ISR against rice blast in potting soil and ASS conditions. The CLiPs surfactin, iturin and fengycin completely suppressed P. oryzae spore germination resulting in disease severity reduction when co-applied on rice leaves. In vitro microscopic assays revealed that iturin and fengycin inhibited the mycelial growth of the fungus P. oryzae, while surfactin had no effect. The capacity of indigenous Bacillus spp. to reduce rice blast by direct and indirect antagonism in ASS conditions provides an opportunity to explore their usage for rice blast control in the field.
Funder
Excellence of Science programme EOS
Subject
Virology,Microbiology (medical),Microbiology
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献