Organic Amendments Alter Soil Hydrology and Belowground Microbiome of Tomato (Solanum lycopersicum)

Author:

Readyhough Taylor,Neher Deborah A.ORCID,Andrews Tucker

Abstract

Manure-derived organic amendments are a cost-effective tool that provide many potential benefits to plant and soil health including fertility, water retention, and disease suppression. A greenhouse experiment was conducted to evaluate how dairy manure compost (DMC), dairy manure compost-derived vermicompost (VC), and dehydrated poultry manure pellets (PP) impact the tripartite relationship among plant growth, soil physiochemical properties, and microbial community composition. Of tomato plants with manure-derived fertilizers amendments, only VC led to vigorous growth through the duration of the experiment, whereas DMC had mixed impacts on plant growth and PP was detrimental. Organic amendments increased soil porosity and soil water holding capacity, but delayed plant maturation and decreased plant biomass. Composition of bacterial communities were affected more by organic amendment than fungal communities in all microhabitats. Composition of communities outside roots (bulk soil, rhizosphere, rhizoplane) contrasted those within roots (endosphere). Distinct microbial communities were detected for each treatment, with an abundance of Massilia, Chryseolinea, Scedosporium, and Acinetobacter distinguishing the control, vermicompost, dairy manure compost, and dehydrated poultry manure pellet treatments, respectively. This study suggests that plant growth is affected by the application of organic amendments not only because of the soil microbial communities introduced, but also due to a synergistic effect on the physical soil environment. Furthermore, there is a strong interaction between root growth and the spatial heterogeneity of soil and root-associated microbial communities.

Funder

Vermont Agricultural Experiment Station Competitive Hatch Program

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3