Lactobacillus reuteri BM53-1 Produces a Compound That Inhibits Sticky Glucan Synthesis by Streptococcus mutans

Author:

Noda Masafumi,Sugihara Naho,Sugimoto Yoshimi,Hayashi Ikue,Sugimoto Sachiko,Danshiitsoodol NarandalaiORCID,Sugiyama Masanori

Abstract

Cariogenic bacteria, such as Streptococcus (S.) mutans and S. sobrinus, produce insoluble and sticky glucans as a biofilm material. The present study demonstrates that a lactic acid bacterium (LAB) named BM53-1 produces a substance that inhibits the sticky glucan synthesis. The BM53-1 strain was isolated from a flower of Actinidia polygama and identified as Lactobacillus reuteri. The substance that inhibits sticky glucan synthesis does not exhibit antibacterial activity against S. mutans. The cariogenic S. mutans produces glucans under the control of three glucosyltransferase (GTF) enzymes, named GtfB, GtfC, and GtfD. Although GtfB and GtfC produce insoluble glucans, GtfD forms soluble glucans. Through quantitative reverse-transcriptional (qRT)-PCR analysis, it was revealed that the BM53-1-derived glucan-production inhibitor (GI) enhances the transcriptions of gtfB and gtfC genes 2- to 7-fold at the early stage of cultivation. However, that of gtfD was not enhanced in the presence of the GI, indicating that the glucan stickiness produced by S. mutans was significantly weaker in the presence of the GI. Our result demonstrates that Lb. reuteri BM53-1 is useful to prevent dental caries.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Reference63 articles.

1. Enamel remineralization: controlling the caries disease or treating early caries lesions?

2. Dental caries: a dynamic disease process

3. The comparative evaluation of salivary biomarkers (calcium, phosphate, salivary pH) in cario-resistance versus cario-activity;Nicolae;Rev. Chim.,2016

4. Histology, salivary glands;Brazen,2021

5. Saliva and Dental Pellicle-A Review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3