A Mucoralean White Collar-1 Photoreceptor Controls Virulence by Regulating an Intricate Gene Network during Host Interactions

Author:

Pérez-Arques CarlosORCID,Navarro-Mendoza María IsabelORCID,Murcia LauraORCID,Lax CarlosORCID,Sanchis Marta,Capilla JavierORCID,Navarro EusebioORCID,Garre VictorianoORCID,Nicolás Francisco EstebanORCID

Abstract

Mucolares are an ancient group of fungi encompassing the causal agents for the lethal infection mucormycosis. The high lethality rates, the emerging character of this disease, and the broad antifungal resistance of its causal agents are mucormycosis features that are alarming clinicians and researchers. Thus, the research field around mucormycosis is currently focused on finding specific weaknesses and targets in Mucorales for developing new treatments. In this work, we tested the role of the white-collar genes family in the virulence potential of Mucor lusitanicus. Study of the three genes of this family, mcwc-1a, mcwc-1b, and mcwc-1c, resulted in a marked functional specialization, as only mcwc-1a was essential to maintain the virulence potential of M. lusitanicus. The traditional role of wc-1 genes regulating light-dependent responses is a thoroughly studied field, whereas their role in virulence remains uncharacterized. In this work, we investigated the mechanism involving mcwc-1a in virulence from an integrated transcriptomic and functional approach during the host–pathogen interaction. Our results revealed mcwc-1a as a master regulator controlling an extensive gene network. Further dissection of this gene network clustering its components by type of regulation and functional criteria disclosed a multifunctional mechanism depending on diverse pathways. In the absence of phagocytic cells, mcwc-1a controlled pathways related to cell motility and the cytoskeleton that could be associated with the essential tropism during tissue invasion. After phagocytosis, several oxidative response pathways dependent on mcwc-1a were activated during the germination of M. lusitanicus spores inside phagocytic cells, which is the first stage of the infection. The third relevant group of genes involved in virulence and regulated by mcwc-1a belonged to the “unknown function,” indicating that new and hidden pathways are involved in virulence. The unknown function category is especially pertinent in the study of mucormycosis, as it is highly enriched in specific fungal genes that represent the most promising targets for developing new antifungal compounds. These results unveil a complex multifunctional mechanism used by wc-1 genes to regulate the pathogenic potential in Mucorales that could also apply to other fungal pathogens.

Funder

ministerio de economia y competitividad

Ministerio de Ciencia, Innovación y Universidades, Spain

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3