Characterization of Komagataeibacter Isolate Reveals New Prospects in Waste Stream Valorization for Bacterial Cellulose Production

Author:

Cannazza Pietro,Rissanen Antti J.,Guizelini Dieval,Losoi Pauli,Sarlin EssiORCID,Romano Diego,Santala Ville,Mangayil Rahul

Abstract

Komagataeibacter spp. has been used for the bioconversion of industrial wastes and lignocellulosic hydrolysates to bacterial cellulose (BC). Recently, studies have demonstrated the capacity of Komagataeibacter spp. in the biotransformation of inhibitors found in lignocellulosic hydrolysates, aromatic lignin-derived monomers (LDMs) and acetate. In general, detoxification and BC synthesis from lignocellulosic inhibitors requires a carbon flow from acetyl-coA towards tricarboxylic acid and gluconeogenesis, respectively. However, the related molecular aspects have not yet been identified in Komagataeibacter spp. In this study, we isolated a cellulose-producing bacterium capable of synthesizing BC in a minimal medium containing crude glycerol, a by-product from the biodiesel production process. The isolate, affiliated to Komagataeibacter genus, synthesized cellulose in a minimal medium containing glucose (3.3 ± 0.3 g/L), pure glycerol (2.2 ± 0.1 g/L) and crude glycerol (2.1 ± 0.1 g/L). Genome assembly and annotation identified four copies of bacterial cellulose synthase operon and genes for redirecting the carbon from the central metabolic pathway to gluconeogenesis. According to the genome annotations, a BC production route from acetyl-CoA, a central metabolic intermediate, was hypothesized and was validated using acetate. We identified that when K. rhaeticus ENS9b was grown in a minimal medium supplemented with acetate, BC production was not observed. However, in the presence of readily utilizable substrates, such as spent yeast hydrolysate, acetate supplementation improved BC synthesis.

Funder

Academy of Finland

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3