Impact of Phage Therapy on Multidrug-Resistant Escherichia coli Intestinal Carriage in a Murine Model

Author:

Javaudin FrançoisORCID,Bémer PascaleORCID,Batard Eric,Montassier EmmanuelORCID

Abstract

Introduction: The growing resistance of bacteria to antibiotics is a major global public health concern. An important reservoir of this resistance is the gut microbiota. However, limited data are available on the ability of phage therapy to reduce the digestive carriage of multidrug-resistant bacteria. Materials and methods: Four novel lytic phages were isolated in vitro for efficacy against an extended-spectrum beta-lactamase-producing (ESBL) Escherichia coli strain also resistant to carbapenems through a carbapenemase OXA-48. The first step was to develop models of ESBL E. coli digestive carriage in mice. The second step was to test the efficacy of an oral and rectal phage therapy (a cocktail of four phages or microencapsulated phage) to reduce this carriage. Results: The two most intense models of digestive carriage were obtained by administering amoxicillin (0.5 g·L−1) continuously in the drinking water (Model 1) or pantoprazole (0.1 g·L−1) continuously in the drinking water, combined with amoxicillin (0.5 g·L−1), for the first 8 days (Model 2). Oral administration of the phage cocktail to Model 1 resulted in a transient reduction in the concentration of ESBL E. coli in the faeces 9 days after the bacterial challenge (median = 5.33 × 108 versus 2.76 × 109 CFU·g−1, p = 0.02). In contrast, in Model 2, oral or oral + rectal administration of this cocktail did not alter the bacterial titre compared to the control (area under the curve, AUC, 3.49 × 109; 3.41 × 109 and 3.82 × 109 for the control, oral and oral + rectal groups, respectively; p-value > 0.8 for each two-by-two group comparison), as well as the administration of an oral microencapsulated phage in Model 1 (AUC = 8.93 × 109 versus 9.04 × 109, p = 0.81). Conclusions: Oral treatment with amoxicillin promoted digestive carriage in mice, which was also the case for the addition of pantoprazole. However, our study confirms the difficulty of achieving efficacy with phage therapy to reduce multidrug-resistant bacterial digestive carriage in vivo.

Funder

Clean Cells

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3