Abstract
Introduction: The growing resistance of bacteria to antibiotics is a major global public health concern. An important reservoir of this resistance is the gut microbiota. However, limited data are available on the ability of phage therapy to reduce the digestive carriage of multidrug-resistant bacteria. Materials and methods: Four novel lytic phages were isolated in vitro for efficacy against an extended-spectrum beta-lactamase-producing (ESBL) Escherichia coli strain also resistant to carbapenems through a carbapenemase OXA-48. The first step was to develop models of ESBL E. coli digestive carriage in mice. The second step was to test the efficacy of an oral and rectal phage therapy (a cocktail of four phages or microencapsulated phage) to reduce this carriage. Results: The two most intense models of digestive carriage were obtained by administering amoxicillin (0.5 g·L−1) continuously in the drinking water (Model 1) or pantoprazole (0.1 g·L−1) continuously in the drinking water, combined with amoxicillin (0.5 g·L−1), for the first 8 days (Model 2). Oral administration of the phage cocktail to Model 1 resulted in a transient reduction in the concentration of ESBL E. coli in the faeces 9 days after the bacterial challenge (median = 5.33 × 108 versus 2.76 × 109 CFU·g−1, p = 0.02). In contrast, in Model 2, oral or oral + rectal administration of this cocktail did not alter the bacterial titre compared to the control (area under the curve, AUC, 3.49 × 109; 3.41 × 109 and 3.82 × 109 for the control, oral and oral + rectal groups, respectively; p-value > 0.8 for each two-by-two group comparison), as well as the administration of an oral microencapsulated phage in Model 1 (AUC = 8.93 × 109 versus 9.04 × 109, p = 0.81). Conclusions: Oral treatment with amoxicillin promoted digestive carriage in mice, which was also the case for the addition of pantoprazole. However, our study confirms the difficulty of achieving efficacy with phage therapy to reduce multidrug-resistant bacterial digestive carriage in vivo.
Subject
Virology,Microbiology (medical),Microbiology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献