Rapid Identification of Escherichia coli Colistin-Resistant Strains by MALDI-TOF Mass Spectrometry

Author:

Calderaro AdrianaORCID,Buttrini Mirko,Farina Benedetta,Montecchini Sara,Martinelli Monica,Crocamo Federica,Arcangeletti Maria CristinaORCID,Chezzi Carlo,De Conto FloraORCID

Abstract

Colistin resistance is one of the major threats for global public health, requiring reliable and rapid susceptibility testing methods. The aim of this study was the evaluation of a MALDI-TOF mass spectrometry (MS) peak-based assay to distinguish colistin resistant (colR) from susceptible (colS) Escherichia coli strains. To this end, a classifying algorithm model (CAM) was developed, testing three different algorithms: Genetic Algorithm (GA), Supervised Neural Network (SNN) and Quick Classifier (QC). Among them, the SNN- and GA-based CAMs showed the best performances: recognition capability (RC) of 100% each one, and cross validation (CV) of 97.62% and 100%, respectively. Even if both algorithms shared similar RC and CV values, the SNN-based CAM was the best performing one, correctly identifying 67/71 (94.4%) of the E. coli strains collected: in point of fact, it correctly identified the greatest number of colS strains (42/43; 97.7%), despite its lower ability in identifying the colR strains (15/18; 83.3%). In conclusion, although broth microdilution remains the gold standard method for testing colistin susceptibility, the CAM represents a useful tool to rapidly screen colR and colS strains in clinical practice.

Funder

Italian Ministry for the University and Research

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3