Identification of a Novel Therapeutic Target against XDR Salmonella Typhi H58 Using Genomics Driven Approach Followed Up by Natural Products Virtual Screening

Author:

Jalal Khurshid,Khan Kanwal,Hassam Muhammad,Abbas Muhammad Naseer,Uddin ReazORCID,Khusro AmeerORCID,Sahibzada Muhammad Umar KhayamORCID,Gajdács MárióORCID

Abstract

Typhoid fever is caused by a pathogenic, rod-shaped, flagellated, and Gram-negative bacterium known as Salmonella Typhi. It features a polysaccharide capsule that acts as a virulence factor and deceives the host immune system by protecting phagocytosis. Typhoid fever remains a major health concern in low and middle-income countries, with an estimated death rate of ~200,000 per annum. However, the situation is exacerbated by the emergence of the extensively drug-resistant (XDR) strain designated as H58 of S. Typhi. The emergence of the XDR strain is alarming, and it poses serious threats to public health due to the failure of the current therapeutic regimen. A relatively newer computational method called subtractive genomics analyses has been widely applied to discover novel and new drug targets against pathogens, particularly drug-resistant ones. The method involves the gradual reduction of the complete proteome of the pathogen, leading to few potential and novel drug targets. Thus, in the current study, a subtractive genomics approach was applied against the Salmonella XDR strain to identify potential drug targets. The current study predicted four prioritized proteins (i.e., Colanic acid biosynthesis acetyltransferase wcaB, Shikimate dehydrogenase aroE, multidrug efflux RND transporter permease subunit MdtC, and pantothenate synthetase panC) as potential drug targets. Though few of the prioritized proteins are treated in the literature as the established drug targets against other pathogenic bacteria, these drug targets are identified here for the first time against S. Typhi (i.e., S. Typhi XDR). The current study aimed at drawing attention to new drug targets against S. Typhi that remain largely unexplored. One of the prioritized drug targets, i.e., Colanic acid biosynthesis acetyltransferase, was predicted as a unique, new drug target against S. Typhi XDR. Therefore, the Colanic acid was further explored using structure-based techniques. Additionally, ~1000 natural compounds were docked with Colanic acid biosynthesis acetyltransferase, resulting in the prediction of seven compounds as potential lead candidates against the S. Typhi XDR strain. The ADMET properties and binding energies via the docking program of these seven compounds characterized them as novel drug candidates. They may potentially be used for the development of future drugs in the treatment of Typhoid fever.

Funder

National Excellence Program of the Ministry for Innovation and Technology

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Reference57 articles.

1. Polyosides (bacteries encapsulees);Lindberg;Comptes Rendus de l’Academie des Sciences Series III Sciences de la Vie,1999

2. The global burden of typhoid fever;Crump;Bull. World Health Organ.,2004

3. Emergence of an Extensively Drug-Resistant Salmonella enterica Serovar Typhi Clone Harboring a Promiscuous Plasmid Encoding Resistance to Fluoroquinolones and Third-Generation Cephalosporins

4. Possible mode of emergence for drug-resistant leprosy is revealed by an analysis of samples from Mexico;Matsuoka;Jpn. J. Infect. Dis.,2010

5. Computational identification of potential drug targets against Mycobacterium leprae

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3