Ovariectomy-Induced Dysbiosis May Have a Minor Effect on Bone in Mice

Author:

Kosaka Satoshi,Nadatani YujiORCID,Higashimori Akira,Otani KojiORCID,Fujimoto KosukeORCID,Nagata Yuki,Ominami Masaki,Fukunaga ShuseiORCID,Hosomi ShuheiORCID,Kamata Noriko,Tanaka Fumio,Nagami Yasuaki,Taira Koichi,Imoto SeiyaORCID,Uematsu Satoshi,Watanabe Toshio,Fujiwara Yasuhiro

Abstract

We determined the bone mineral density (BMD) and the expression of serum bone formation marker (procollagen type I N-terminal propeptide: PINP) and bone resorption marker (C-terminal telopeptide of collagen: CTX) by ELISA to evaluate ovariectomy-induced osteoporosis in ovariectomized (OVX) mice. The intestinal microbiota of the mice was assessed using 16S rRNA gene sequencing. OVX mice exhibited a lower BMD of 87% with higher serum levels of CTX and PINP compared to sham-operated (sham) mice. The cecum microbiome of OVX mice showed lower bacterial diversity than that of sham mice. TNFα mRNA levels in the colon were 1.6 times higher, and zonula occludens-1 mRNA and protein expression were lower in OVX mice than in sham mice, suggesting that ovariectomy induced inflammation and increased intestinal permeability. Next, we used antibiotic treatment followed by fecal microbiota transplantation (FMT) to remodel the gut microbiota in the OVX mice. A decrease in PINP was observed in antibiotic-treated mice, while there was no change in BMD or CTX between mice with and without antibiotic treatment. Oral transplantation of the luminal cecal content of OVX or sham mice to antibiotic-treated mice did not affect the BMD or PINP and CTX expression. Additionally, transplantation of the luminal contents of OVX or sham mice to antibiotic-treated OVX mice had similar effects on BMD, PINP, and CTX. In conclusion, although ovariectomy induces dysbiosis in the colon, the changes in the gut microbiota may only have a minor role in ovariectomy-induced osteoporosis.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3