Multi-Omics Analysis Reveals Dietary Fiber’s Impact on Growth, Slaughter Performance, and Gut Microbiome in Durco × Bamei Crossbred Pig

Author:

Tang Xianjiang12,Zhang Liangzhi12ORCID,Wang Lei3,Ren Shien12,Zhang Jianbo3ORCID,Ma Yuhong3,Xu Fafang3,Wu Guofang13,Zhang Yanming12

Affiliation:

1. Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China

2. Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China

3. Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China

Abstract

Dietary fiber (DF) is an important nutrient component in pig’s diet that remarkably influences their growth and slaughter performance. The ability of pigs to digest DF depends on the microbial composition of the intestinal tract, particularly in the hindgut. However, studies on how DF alters the growth and slaughter performance of pigs by shaping the gut microbial composition and metabolites are still limited. Therefore, this study aimed to investigate the effects of DF on microbial composition, functions, and metabolites, ultimately altering host growth and slaughter performance using Durco × Bamei crossbred pigs supplemented with 0%, 10%, 17%, and 24% broad bean silage in the basic diet. We found that the final weight, average daily gain, fat, and lean meat weight significantly decreased with increasing DF. Pigs with the lowest slaughter rate and fat weight were observed in the 24% fiber-supplemented group. Gut microbial communities with the highest alpha diversity were formed in the 17% fiber group. The relative abundance of fiber-degrading bacteria, bile acid, and succinate-producing bacteria, including Prevotella sp., Bacteroides sp., Ruminococcus sp., and Parabacteroides sp., and functional pathways, including the butanoate metabolism and the tricarboxylic acid [TCA] cycle, significantly increased in the high-fiber groups. The concentrations of several bile acids significantly decreased in the fiber-supplemented groups, whereas the concentrations of succinate and long-chain fatty acids increased. Our results indicate that a high-fiber diet may alter the growth and slaughter performance of Durco × Bamei crossbred pigs by modulating the composition of Prevotella sp., Bacteroides sp., Ruminococcus sp., Parabacteroides sp., and metabolite pathways of bile acids and succinate.

Funder

Research and Demonstration of Reproduction of High-quality Pig Breeds and Industrialization Technology in Qinghai Province

Second Tibetan Plateau Scientific Expedition and Research Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3