pH Nonlinearly Dominates Soil Bacterial Community Assembly along an Altitudinal Gradient in Oak-Dominant Forests

Author:

Lin Litao1ORCID,Li Guixiang2,Yu Huiyi1,Ma Keming3

Affiliation:

1. Chinese Research Academy of Environmental Sciences, Beijing 100012, China

2. Weifang Academy of Agricultural Sciences, Weifang 261071, China

3. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

Abstract

Soil bacteria, the predominant microbiota in soil, are subject to the law of minimum and the law of tolerance, but the assembly patterns of soil bacteria in response to environmental factors remain far from clear. Here, we took advantage of an altitudinal gradient (1020–1770 asl) in oak-dominant forests and assessed whether soil bacteria linearly or nonlinearly respond to environmental properties through the changes in the community diversity and composition. We found that soil bacteria decreased with increasing altitude in terms of the species richness and phylogenetic structure, while they were unchanged with increasing altitude in terms of community composition. The species richness was nonlinearly affected by the soil pH (19.9%), C:N ratio (14.3%), SOC (11.4%), and silt + clay content (9.9%). Specifically, the species richness peaked at a pH of 5.5–6.5, and an SOC of 25–50 g kg−1, and it showed abrupt decreases and increases at a C:N ratio of 14.5 and a silt + clay content of 70%. The community composition was significantly affected by the soil pH (28.2%), then by the SOC (3.6%), available phosphorus (1.0%), and silt + clay content (0.5%), and it showed less turnovers at a pH of 6.0, SOC of 50 g kg−1, and available phosphorus > 3.0 g kg−1. These findings imply that environmental filtering processes nonlinearly shape bacterial communities.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3