Antimicrobial Effect of Chitosan Nanoparticles and Allium Species on Mycobacterium tuberculosis and Several Other Microorganisms

Author:

Olivas-Flores Jocelyn1,Chávez-Méndez José Román2ORCID,Castillo-Martínez Nydia Alejandra2ORCID,Sánchez-Pérez Héctor Javier3ORCID,Serrano-Medina Aracely4ORCID,Cornejo-Bravo José Manuel1ORCID

Affiliation:

1. Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana 22424, Mexico

2. Faculty of Health Sciences, Autonomous University of Baja California, Blvd Universitario No. 1000, Valle San Pedro, Tijuana 21500, Mexico

3. Department of Health, El Colegio de la Frontera Sur (ECOSUR), Mexican Network for Research in Tuberculosis and Other Mycobacterioses, San Cristóbal de Las Casas 29290, Mexico

4. Faculty of Medicine and Psychology, Autonomous University of Baja California, Calzada Universidad 14418, Parque Industrial Internacional, Tijuana 22424, Mexico

Abstract

This study evaluates the antimicrobial efficacy of chitosan nanoparticles (CNPs), varying in size, against clinical isolates of Mycobacterium tuberculosis (MTB), E. coli, S. aureus, E. faecalis, and C. albicans, as well as the antimicrobial effects of aqueous extracts and lyophilized powders of Allium (garlic) species. CNPs were synthesized through ionotropic gelation and characterized by Z potential, hydrodynamic diameter (dynamic light scattering, DLS), and SEM. Aqueous garlic extracts were prepared via decoction. We assessed antimicrobial activity using disk diffusion and broth microdilution methods; in addition, a modified agar proportion method in blood agar was used for antimicrobial activity against MTB. CNPs inhibited MTB growth at 300 μg for 116.6 nm particles and 400 μg for 364.4 nm particles. The highest antimicrobial activity was observed against E. faecalis with nanoparticles between 200 and 280 nm. Allium sativum extract produced inhibition for C. albicans at 100 μg. The results indicate that CNPs possess significant antimicrobial properties against a range of pathogens, including MTB, at high concentrations. On the other hand, aqueous Allium sativum extracts exhibited antimicrobial activity. Nonetheless, due to their instability in solution, the use of lyophilized Allium sativum powder is preferable.

Funder

Internal Call for Research Projects UABC

Autonomous University of Baja California

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3